
Modern iOS Pentesting:
No Jailbreak Needed
presented by Noah Farmer, Senior AppSec Engineer at Dvuln

Some stuff you’ll probably recognise

JailbreakMe (2011) - iOS 4
@comex

redsn0w (2012) - iOS 4 - 6
iPhone Dev-Team

● Custom themes (changing the look of the entire device)
● Super cool tweaks (remember Barrel/Cylinder??)
● Carrier unlocking

Why did *most* people jailbreak?

So.. what got *me* into jailbreaking?

● Had a Minecraft Pocket Edition server shared with classmates in year 5
● Annoyed with being locked in survival mode, wanted free diamonds
● Did some Googling…

Fast forward to today…

● Here I am working in cybersecurity, often tasked with pentesting mobile
applications

My toolsuite

These help to cover pretty much every
MASTG checklist item, and more…

Installing was pretty simple…

Ready to test!

…but now?

Unfortunately,
jailbreaking has lost its community.

Google Trends data for “iOS Jailbreaking” shows a pretty obvious decline…
why?

Apple’s security bounties are among some of the
highest in the industry

Example: CVE-2024-23208

● Affected iOS (iPad/iPhone), macOS, tvOS, and watchOS

● Allows arbitrary code execution with kernel privileges.. also known as a

jailbreak

● Submitted to Apple, and patched in iOS 17.3 :(

Tweaks are now Features

● Vmoji by @vintendo became
“Emoji” in iOS 5

● SBSettings by @BigBoss became
“Control Center” in iOS 7

● StickerMe by Alexander Laurus
became “Stickers” in iOS 10

● Noctis by @LaughingQuoll
became “Dark Mode” in iOS 13

…you get the point

Yes, it’s still a thing. But…

Here’s where your pentesting devices are coming
from…

Even if you had these devices…

Passkey API
iOS 16+

Focus Filters
iOS 16+

…just to name a few

SharePlay API
iOS 15+

The usual setup

iPhone X

running iOS 14.4.1

Can pentest most apps:

…but not this time

● Contract signed
● Testing dates locked in
● iOS device jailbroken and ready
● No IPA provided (black-box), so

we’ll install the app from the App
Store…

Dead end?

Apple’s gift to pentesting: get_task_allow

● Special entitlement, which you can enable when signing (or re-signing)
an application

● Allows external processes, like a debugger, to attach themselves to the
application using a special function called task_for_pid().

● Once attached, we can read/write memory, and inject our own code into
the application.

What does this have to do with jailbreaking?

● What's the first thing a jailbreak has to achieve? tfp0
● tfp0 (short for task_for_pid(0)), gives you access to read & write

memory of the kernel (pid = 0)
● If you can read/write the kernel’s memory, you have the foundations for

a full device jailbreak!

But, we don’t need a full-device jailbreak.

If we can re-sign an application with
this get_task_allow entitlement…
we can achieve code execution,
memory read/write, and more…
just for that single application.

Therefore, this entitlement allows us to
gain a “jailbreak-like” state, limited to a
single application sandbox.

Not fair, FairPlay!

● Unfortunately, you can’t just pull the application, resign it with that
entitlement, and go about your day.

● If you did, your app sadly won’t open, and you’ll be greeted nice little
messages like these:

Why does this happen?

● Apple encrypts App Store applications with FairPlay DRM
● When you download from the App Store, the IPA is encrypted with a key

tied to your Apple ID
● When re-signing (entitlements or not), you break the digital signature of

the IPA, and thus:

No application for you!

Fortunately, all is not lost

● Yes, FairPlay is annoying - but it is crucial for protecting IP
● There are a number of methods to decrypt and remove FairPlay DRM,

such as frida-ios-dump, Clutch, FoulDecrypt, and Iridium - all of which
require a jailbreak

But wait!

● The app won’t run on my jailbroken iOS 14 device

● We need the decrypted IPA to go any further…

● Decrypting requires a jailbreak… are we stuck? No!

● The solution?

Static Decryption!

Static Decryption

● We use a system function, mremap_encrypted(), to decrypt a binary
on the disk.

● That means, the app doesn’t have to be able to run, and we don’t need
to dump it from memory.

● All we need is a jailbroken environment to run the function.

So, what does that mean?

To decrypt, all we have to do is:

1. Trick the device into installing the app by changing the minimum
required iOS version

2. Use a decryption tool that utilises mremap_encrypted() such as
Iridium, FlexDecrypt, or FoulDecrypt

3. Profit!

For the sake of simplicity…

Jailbreak 2.0 - Adding our entitlements

● Now, we can take the final crucial step, enabling the get-task-allow

entitlement.

● Fortunately, iOS App Signer (available on GitHub), makes this pretty easy:

Jailbreak 2.0 - Time to hook!

● We now have a nice signed, decrypted, and get-task-allow enabled
application!

● Now, we can push this onto our device using tools like XCode or
ideviceinstaller, and…

We have execution on the latest iOS!

Feels like home :-)

MASTG covered:
Pentest completed:

Summary

● Black-box pentest, no IPA file given
● Can’t use jailbroken device, as app doesn’t support it
● Can’t use main device, as no jailbreaks existed
● We patched the IPA to install on our older device, even though it

wouldn’t run
● Used that device to decrypt the IPA
● Resigned the IPA with the get-task-allow entitlement
● Installed it on our main device (iPhone 14 Pro)
● Achieved code execution in our application’s sandbox

In closing…

Thanks!

	Slide 1: Modern iOS Pentesting: No Jailbreak Needed presented by Noah Farmer, Senior AppSec Engineer at Dvuln
	Slide 2: Some stuff you’ll probably recognise
	Slide 3: Why did *most* people jailbreak?
	Slide 4: So.. what got *me* into jailbreaking?
	Slide 5: Fast forward to today…
	Slide 6: My toolsuite
	Slide 7: Installing was pretty simple…
	Slide 8: …but now?
	Slide 9: Unfortunately, jailbreaking has lost its community.
	Slide 10
	Slide 11: Apple’s security bounties are among some of the highest in the industry
	Slide 12: Example: CVE-2024-23208
	Slide 13: Tweaks are now Features
	Slide 14: Yes, it’s still a thing. But…
	Slide 15: Here’s where your pentesting devices are coming from…
	Slide 16: Even if you had these devices…
	Slide 17: The usual setup
	Slide 18: …but not this time
	Slide 19: Dead end?
	Slide 20: Apple’s gift to pentesting: get_task_allow
	Slide 21: What does this have to do with jailbreaking?
	Slide 22: But, we don’t need a full-device jailbreak.
	Slide 23: Not fair, FairPlay!
	Slide 24: Why does this happen?
	Slide 25: Fortunately, all is not lost
	Slide 26: But wait!
	Slide 27: Static Decryption
	Slide 28: So, what does that mean?
	Slide 29: Jailbreak 2.0 - Adding our entitlements
	Slide 30: Jailbreak 2.0 - Time to hook!
	Slide 31: Feels like home :-)
	Slide 32: Summary
	Slide 33: In closing…
	Slide 34: Thanks!

